Small Conductance Ca -Activated K Channels Modulate Synaptic Plasticity and Memory Encoding

نویسندگان

  • Robert W. Stackman
  • Rebecca S. Hammond
  • Eftihia Linardatos
  • Aaron Gerlach
  • James Maylie
  • John P. Adelman
  • Thanos Tzounopoulos
چکیده

Activity-dependent changes in neuronal excitability and synaptic strength are thought to underlie memory encoding. In hippocampal CA1 neurons, small conductance Ca -activated K (SK) channels contribute to the afterhyperpolarization, affecting neuronal excitability. In the present study, we examined the effect of apamin-sensitive SK channels on the induction of hippocampal synaptic plasticity in response to a range of stimulation frequencies. In addition, the role of apamin-sensitive SK channels on hippocampal-dependent memory encoding and retention was also tested. The results show that blocking SK channels with apamin increased the excitability of hippocampal neurons and facilitated the induction of synaptic plasticity by shifting the modification threshold to lower frequencies. This facilitation was NMDA receptor (NMDAR) dependent and appeared to be postsynaptic. Mice treated with apamin demonstrated accelerated hippocampal-dependent spatial and nonspatial memory encoding. They required fewer trials to learn the location of a hidden platform in the Morris water maze and less time to encode object memory in an object-recognition task compared with saline-treated mice. Apamin did not influence long-term retention of spatial or nonspatial memory. These data support a role for SK channels in the modulation of hippocampal synaptic plasticity and hippocampal-dependent memory encoding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P13: Potassium Channels and Long-Term Potentiation Formation

Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...

متن کامل

Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding.

Activity-dependent changes in neuronal excitability and synaptic strength are thought to underlie memory encoding. In hippocampal CA1 neurons, small conductance Ca2+-activated K+ (SK) channels contribute to the afterhyperpolarization, affecting neuronal excitability. In the present study, we examined the effect of apamin-sensitive SK channels on the induction of hippocampal synaptic plasticity ...

متن کامل

Small-conductance Ca -activated K channels modulate action potential-induced Ca transients in hippocampal neurons

Tonini R, Ferraro T, Sampedro-Castañeda M, Cavaccini A, Stocker M, Richards CD, Pedarzani P. Small-conductance Ca activated K channels modulate action potential-induced Ca transients in hippocampal neurons. J Neurophysiol 109: 1514–1524, 2013. First published December 19, 2012; doi:10.1152/jn.00346.2012.—In hippocampal pyramidal neurons, voltage-gated Ca channels open in response to action pote...

متن کامل

KCa2 and KCa3 Channels in Learning and Memory Processes, and Neurodegeneration

Calcium-activated potassium (K(Ca)) channels are present throughout the central nervous system as well as many peripheral tissues. Activation of K(Ca) channels contribute to maintenance of the neuronal membrane potential and was shown to underlie the afterhyperpolarization (AHP) that regulates action potential firing and limits the firing frequency of repetitive action potentials. Different sub...

متن کامل

Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity.

Apamin-sensitive, small-conductance, Ca2+-activated K+ channels (SK channels) modulate neuronal excitability in CA1 neurons. Blocking all SK channel subtypes with apamin facilitates the induction of hippocampal synaptic plasticity and enhances hippocampal learning. In CA1 dendrites, SK channels are activated by Ca2+ through NMDA receptors and restrict glutamate-mediated EPSPs. Studies of SK cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002